On Steklov-Neumann boundary value problems

نویسندگان

  • J. D. B. de Godoi
  • O. H. Miyagaki
  • R. S. Rodrigues
چکیده

We will study a class of Steklov-Neumann boundary value problems for some quasilinear elliptic equations. We obtain result ensuring the existence of solutions when resonance and nonresonance conditions occur. The result was obtained by using variational arguments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Boundary Meshless Method for Neumann Problem

Boundary integral equations (BIE) are reformulations of boundary value problems for partial differential equations. There is a plethora of research on numerical methods for all types of these equations such as solving by discretization which includes numerical integration. In this paper, the Neumann problem is reformulated to a BIE, and then moving least squares as a meshless method is describe...

متن کامل

Sloshing, Steklov and corners I: Asymptotics of sloshing eigenvalues

This is the first in a series of two papers aiming to establish sharp spectral asymptotics for Steklov type problems on planar domains with corners. In the present paper we focus on the two-dimensional sloshing problem, which is a mixed Steklov-Neumann boundary value problem describing small vertical oscillations of an ideal fluid in a container or in a canal with a uniform cross-section. We pr...

متن کامل

On a class of systems of n Neumann two-point boundary value Sturm-Liouville type equations

Employing a three critical points theorem, we prove the existence ofmultiple solutions for a class of Neumann two-point boundary valueSturm-Liouville type equations. Using a local minimum theorem fordifferentiable functionals the existence of at least one non-trivialsolution is also ensured.

متن کامل

Domain decomposition methods via boundary integral equations

Domain decomposition methods are designed to deal with coupled or transmission problems for partial differential equations. Since the original boundary value problem is replaced by local problems in substructures, domain decomposition methods are well suited for both parallelization and coupling of different discretization schemes. In general, the coupled problem is reduced to the Schur complem...

متن کامل

The Dirichlet to Neumann mapping for harmonic differential forms

We show that the full symbol of the Dirichlet to Neumann map of the k-form Laplace’s equation on a Riemannian manifold (of dimension greater than 2) with boundary determines the full Taylor series of the metric at the boundary. This extends the result of Lee and Uhlmann for the case k = 0. The proof avoids the computation of the full symbol by using the calculus of pseudo-differential operators...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015